Notizen / Notes

Aufbau von Fe-Sn-Bindungen über die Reaktion von Tris(trimethylstannyl)amin mit Fe(CO)₅ und Fe(CO)₄CS; ¹³C-, ¹⁷O- und ¹¹⁹Sn-NMR-spektroskopische Untersuchungen

Wolfgang Petz**, Bernd Wrackmeyer*b und Wolfgang Storch^c

Gmelin-Institut für Anorganische Chemie^a, Postfach 900467, D-6000 Frankfurt 90

Laboratorium für Anorganische Chemie der Universität Bayreuth^b, Postfach 101251, D-8580 Bayreuth

Institut für Anorganische Chemie der Universität München^c, Meiserstraße 1, D-8000 München 2

Eingegangen am 30. Juni 1989

Key Words: Iron, thiocarbonyl complex / Iron-tin bond / NMR, ¹³C-, ¹⁷O-, and ¹¹⁹Sn / Dynamic molecules

Formation of Fe-Sn Bonds by the Reaction of Tris(trimethylstannyl)amine with $Fe(CO)_5$ and $Fe(CO)_4CS$; ¹³C-, ¹⁷O-, and ¹¹⁹Sn-NMR-Spectroscopic Studies

The reaction between $N(SnMe_3)_3$ and $Fe(CO)_5$ gives the known complex *cis*-Fe(CO)_4(SnMe_3)_2 (1) in high yield. In the analogous reaction of Fe(CO)_4CS the complex *fac*-Fe(CO)_3(CS)(SnMe_3)_2 (2) is obtained together with small amounts of 1. In addition to the ¹³C-NMR data, the ¹⁷O- and ¹¹⁹Sn-NMR measurements proved particularly useful for studying the dynamic behaviour of 1 and 2.

In früheren Arbeiten¹⁻⁴⁾ haben wir gefunden, daß Organoelementamide des Typs $\text{ER}_n(\text{NMe}_2)_m$ (E = Al, Ti, Sn) mit Übergangsmetallcarbonylen unter Addition einer E – N-Bindung an die CO-Doppelbindung einer terminalen CO-Gruppe reagieren. Hierbei bilden sich in einer Einstufenreaktion direkt die Carbenkomplexe I. Zinnamide mit mehr als einer Sn – N-Bindung wie [Sn(NMe₂)₂]₂, Me₂Sn(NMe₂)₂ und Sn(NMe₂)₄ geben mit Fe(CO)₅ die Biscarbenkomplexe II durch Addition einer zweiten Aminofunktionen an eine weitere CO-Gruppe des Übergangsmetalls.

$$I : M(CO)_{x} = Fe(CO)_{5}, Ni(CO)_{4}, Cr(CO)_{6}, Mo(CO)_{6}, W(CO)_{6}$$

Reaktionen des zinnreichsten Amids, N(SnMe₃)₃, mit den Zweikernkomplexen Mn₂(CO)₁₀, Co₂(CO)₈ und [CpM(CO)_x]₂ (M = Mo, Fe, Ni; x = 3, 2, 1) haben gezeigt, daß es als Stannylierungsagens fungieren kann und damit den Aufbau der entsprechenden einkernigen L_nM – SnMe₃-Komplexe ermöglicht. Das Schicksal des Stickstoffatoms konnte hierbei nicht ganz geklärt werden⁵. Wir berichten nun über Reaktionen von N(SnMe₃)₃ mit Fe(CO)₅ und dem Thiocarbonylderivat Fe(CO)₄CS. Die Dynamik der dabei resultierenden Reaktionsprodukte wurde mittels ¹³C-, ¹⁷O- und ¹¹⁹Sn-NMR-Spektroskopie untersucht.

Ergebnisse und Diskussion

Fe(CO)₅ reagiert mit einer Toluollösung von N(SnMe₃)₃ bei 0°C oder bei Raumtemperatur zu einer farblosen Lösung, aus der nach Säulenchromatographie der Komplex cis-Fe(CO)₄(SnMe₃)₂ (1) in nahezu quantitativer Ausbeute isoliert werden kann. Die dritte SnMe₃-Gruppe des eingesetzten Amids wird in Form von Me₃SnNCO gefunden, das als ein in Pentan schwerlöslicher Niederschlag anfällt. Die Umsetzung von N(SnMe₃)₃ mit Fe(CO)₄CS verläuft weniger glatt. Bereits beim Zutropfen der Zinnverbindung zu einer Lösung des Thiocarbonylkomplexes bildet sich eine tiefrote Lösung. Arbeitet man die Reaktionsmischung analog zu 1 auf, erhält man neben einem in Pentan unlöslichen rotbraunen Festkörper den entsprechenden Thiocarbonylkomplex 2 im Gemisch mit etwa 20% 1. Im IR-Spektrum des Gemisches findet sich eine intensive Bande bei 1280 cm⁻¹, die wir der Valenzschwingung einer terminal gebundenen CS-Gruppe zuordnen. Es ist bisher nicht gelungen, die beiden Komponenten säulenchromatographisch zu trennen.

Schema 1

$$Fe(CO)_{5} \qquad Fe(CO)_{4}(SnMe_{3})_{2} + Me_{3}Sn-NCO$$

$$1$$

$$N(SnMe_{3})_{3}$$

$$Fe(CO)_{4}CS \qquad Fe(CO)_{3}(CS)(SnMe_{3})_{2} + 1 + \dots$$

$$2$$

Die Synthese des bereits bekannten Komplexes 1 mittels $N(SnMe_3)_3$ stellt einen neuen Zugang zu dieser Verbindung dar, die bisher nur in relativ schlechten Ausbeuten aus $Fe(CO)_5$ und $SnMe_4$ oder $Na_2Fe(CO)_4$ und Me_3SnCl erhalten werden konnte⁶⁾. Die erstmalig synthetisierte Thiocarbonylverbindung 2 ist thermisch labil und zersetzt sich bei Raumtemperatur bereits nach 1-2 Stunden

Chem. Ber. 122 (1989) 2261-2264 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/1212-2261 \$ 02.50/0

unter Bildung eines rötlichen, noch nicht näher charakterisierten Produkts.

Die Umsetzung von N(SnMe₃)₃ mit Fe(CO)₅ und Fe(CO)₄CS führt nicht zum Carbenkomplex, sondern zu einer Stannylierung des Metalls, wie sie auch bei den oben genannten Zweikernkomplexen beobachtet wird. Die Übertragung der Stannylgruppe wird möglicherweise durch den potentiellen Lewis-Basen-Charakter der Eisencarbonylkomplexe (freie Koordinationsstelle am Fe) unterstützt. Das am Metall elektronenärmere aber ligandenreichere Cr(CO)₆ reagiert unter vergleichbaren Bedingungen nicht mit N(SnMe₃)₃.

Die Bildung von 1 und 2 verläuft unter recht milden Bedingungen im Gegensatz zur Bildung der L_nMSnMe₃-Komplexe aus den zweikernigen Verbindungen; ein Zusammenhang zwischen der Stärke der Metall-Metall-Bindung und den Reaktionsbedingungen wurde diskutiert⁵.

Der Einbau einer CO-Gruppe des Metalls in die Isocyanatfunktion von Me₃SnNCO legt einen Mechanismus nahe, bei dem im Primärschritt analog zur Carbenreaktion zunächst die Lewis-Base N(SnMe₃)₃ nucleophil an einem Carbonyl-Kohlenstoffatom angreift. Nachfolgend bleibt die Reaktion jedoch nicht auf der Carbenstufe stehen (a), sondern es wird eine SnMe3-Gruppe auf das Metall übertragen. Nach Wanderung einer weiteren SnMe3-Gruppe an das Eisenatom spaltet sich Me₃SnOCN ab, das sich in das stabilere Me₃SnNCO umlagert⁷). Alternativ dazu könnte sich aber auch die Sn - N-Bindung direkt an eine C = Fe-Bindung (b) addieren unter Bildung eines intermediären Carbamoylkomplexes, der unter Wanderung einer weiteren SnMe3-Gruppe an das Übergangsmetall in die Endprodukte zerfällt. Ein analoger Mechanismus wird bei der Umsetzung von N(SnMe₃)₃ mit CS₂ zu Me₃SnSSnMe₃ und Me₃SnNCO postuliert⁸⁾. Diese Reaktion und die Bildung von 1 und 2 demonstrieren eindrucksvoll die Isolobalbeziehung $S \leftarrow Fe(CO)_4$. Die Bildung von 2 aus $Fe(CO)_4CS$ sollte analog erfolgen. Die gleichzeitige Entstehung von 1 jedoch zeigt, daß die Sn-N-Bindung auch an einer Fe=C=S-Gruppierung addiert. Das neben Me₃SnNCO auch zu erwartende Me₃SnNCS (Bildung von 1) konnte auf Grund der geringen Menge im Substanzgemisch nicht identifiziert werden. Auch der zusätzlich angefallene rotbraune Festkörper ist offensichtlich ein Ergebnis des Angriffs der

Schema 2

Base N(SnMe₃)₃ an der Thiocarbonylgruppe, da diese Gruppierung im IR-Spektrum nicht mehr nachgewiesen werden konnte. Wir haben in früheren Untersuchungen eine deutliche Präferenz des Thiocarbonylkohlenstoffatoms gegenüber dem nucleophilen Angriff einer Base gefunden⁹.

NMR-spektroskopische Untersuchungen

Verbindungen des Typs Fe(CO)₄(MR₃)₂ (M = Si, Ge, Sn) zeigen dynamisches Verhalten und wurden bereits häufiger NMR-spektroskopisch untersucht¹⁰⁻¹². Insbesondere die ¹³C-NMR-Spektroskopie¹⁰ und weniger oft NMR-Spektren anderer Kerne wie z. B. ²⁹Si¹¹¹ oder ¹⁷O¹² sind genutzt worden, um Aussagen über Dynamik und Konformation in Lösung zu erhalten. Wir haben uns erneut mit den ¹³C-, ¹⁷O- und ¹¹⁹Sn-NMR-Spektren von 1 (R = Me, M = Sn) beschäftigt, um die entsprechenden NMR-Signale des Thiocarbonylkomplexes 2, der im Gemisch mit 1 anfällt, interpretieren zu können.

Tab. 1. ¹³C-, ¹⁷O- und ¹¹⁹Sn-NMR-Daten^{a,b)} von *cis*-Fe(CO)₄-(SnMe₃)₂ (1) und *fac*-Fe(CO)₃(CS)(SnMe₃)₂ (2)

	¹³ C	C-NMR CS	CH ₃	¹⁷ O-NMR	¹¹⁹ Sn-NMR
1	207.5 [60.8] ^{c)}	-	- 3.8 [274.4]	+ 355.6 + 360.4 (eq) ^{e)} + 350.6 (ax)	+ 80.4 [349.8] ^d
2 ^{f)}	208.2 (eq) [68.0] (cis) [36.0] (trans) 206.1 (ax) [86.0]	305.4 [110.1]	-3.5 [282.3]	+ 362.3 (eq) + 352.3 (ax)	+ 78.5 [322.3] ^{d)}

^{a)} In [D₈]Toluol [$\delta^{13}C(CD_3) = 20.4$]; chemische Verschiebungen in ppm gegen externes Me₄Si (¹³C), H₂O (¹⁷O) bzw. Me₄Sn (¹¹⁹Sn). – ^{b)} In [] sind "J(¹¹Sn,X)-Werte angegeben. – ^{c)} Mittelwerte für raschen Austausch (vgl. Lit.⁸⁾ und Abb. 2). – ^{d) 2}J(¹¹⁹Sn,¹¹⁹Sn)-Wert erhalten durch Multiplikation von ²J(¹¹⁹Sn,¹¹⁷Sn) mit γ (¹¹⁹Sn)/ γ (¹¹⁷Sn). – ^{e)} Bei –10°C; vgl. Abb. 1. – ^{f) 13}C-NMR bei –50°C; ¹⁷O-NMR bei –20°C.

Für 1 war aus ¹³C-NMR-Messungen an ¹³CO-markierten Proben bekannt, daß der dynamische Prozeß für den Austausch äguatorialer (äquatorial kennzeichnet CO-Gruppen in der Sn₂Fe-Ebene) und axialer CO-Gruppen erst bei einer Temperatur < -70 °C langsam relativ zur NMR-Zeitskala wird, daß der Unterschied der $\delta^{13}C(CO)$ -Werte nur sehr klein ist (ca. 0.2 ppm) und daß drei Kopplungskonstanten ${}^{2}J[Sn, {}^{13}C(CO_{ax})], {}^{2}J[Sn, {}^{13}C(CO_{eq-cis})]$ und ²J[Sn,¹³C(CO_{eq-trans})] zu messen sind, die sich im Vorzeichen unterscheiden¹⁰⁾. Wir haben gefunden, daß sich die Aktivierungsenergie für den dynamischen Prozeß bequemer aus den ¹⁷O-NMR-Spektren ermitteln läßt, da für die CO-Gruppen bereits bei -10°C zwei um 10 ppm getrennte ¹⁷O-Resonanzsignale beobachtet werden (vgl. Abb. 1). Der aus diesen Messungen ermittelte Wert $\Delta G_{(278 \text{ K})}^{\pm}$ = 57 \pm 2 kJ \cdot mol⁻¹ ist ca. 11 kJ \cdot mol⁻¹ größer als der bei 198 K (mit $\Delta \delta = 4.7$ Hz) aus den ¹³C-NMR-Spektren ermittelte ΔG^* -Wert¹⁰⁾. Eine attraktive Alternative für die Messungen von Kopplungskonstanten "J(Sn,13C) aus 13C-NMR-Daten bietet die 119Sn-NMR-Spektroskopie immer dann, wenn die longitudinale Relaxationszeit $T_1(^{13}C)$ lang ist¹³, also auch im Falle von CO-Gruppen. Eine ¹³C-Anreicherung kann somit umgangen werden. Zusätzlich erhält man bei Aufnahme der ¹¹⁹Sn-NMR-Spektren für 1 und 2 auch die Kopplungskonstanten ²J(¹¹⁹Sn,¹¹⁷Sn). Das ¹¹⁹Sn-NMR-

Abb. 1. 40.67-MHz-¹⁷O-NMR-Spektrum (natürliche Häufigkeit) von *cis*-Fe(CO)₄(SnMe₃)₂ (1) bei -10°C, ca. 10proz. Lösung in Toluol (Probenrohr 10 mm Durchmesser, Acquisitionszeit 0.08 s, spektrale Breite 25000 Hz, 10000 Scans; Meßzeit 14 min). Das ¹⁷O-Resonanzsignal bei höheren Frequenzen wird aufgrund des ¹⁷O-NMR-Spektrums von 2 den CO_{eq}-Gruppen zugeordnet

Abb. 2. 111.82-MHz-¹¹⁹Sn-NMR-Spektrum von *cis*-Fe(CO)₄-(SnMe₃)₂ (1) bei - 50 °C, ca. 10proz. Lösung in Toluol (Probenrohr 5 mm Durchmesser; mittels refokusierter INEPT-Pulssequenz¹⁴) und ¹H-Entkopplung, 128 Scans, Meßzeit 10 min). Mit * sind die ¹¹⁷Sn-Satelliten entsprechend der Kopplung ²J(¹¹⁹Sn,¹¹⁷Sn) gekennzeichnet. Pfeile zeigen die Kopplung ^{*}J(¹¹⁹Sn,¹³C) an; von außen nach innen: ¹J(¹¹⁹Sn,¹³C_{Me}) = 274.4 Hz; ²J[¹¹⁹Sn,C(CO_a)] = 102.0 Hz; ²J[¹¹⁹Sn,¹³C(CO_{eq-cis})] = 66.0 Hz

Spektrum von 1 zeigt bei Raumtemperatur neben den ¹¹⁷Sn-Satelliten [${}^{2}J({}^{119}Sn,{}^{117}Sn) = 334.3$ Hz] und den ¹³C-Satelliten für ${}^{1}J({}^{119}Sn,{}^{13}C_{Me}) = 274.4$ Hz, die ${}^{13}C(CO)$ -Satelliten mit einer gemittelten Kopplung ${}^{2}J[{}^{119}Sn,{}^{13}C(CO)] = 60.8$ Hz in Übereinstimmung mit dem ${}^{13}C$ -NMR-Spektrum. Bei $-10^{\circ}C$ sind die Signale für ${}^{13}C(CO)$ -Satelliten breit, bei $-30^{\circ}C$ ist bereits die Kopplung ${}^{2}J[{}^{119}Sn,{}^{13}C(CO_{ax})] = 102.0$ Hz zu beobachten. Bei $-50^{\circ}C$ findet man auch die Kopplung ${}^{2}J[{}^{119}Sn,{}^{13}C(CO_{eq-cis})] = 66.0$ Hz, während die ${}^{13}C(CO)$ -Satelliten für die dritte Kopplung ${}^{2}J[{}^{119}Sn,{}^{13}C-(CO_{eq-trans})] =$ am Fuß des zentralen ${}^{119}Sn$ -Resonanzsignals nicht mehr aufgelöst sind (vgl. Abb. 2).

Die Kernresonanzdaten von 2 zeigen, daß der Thiocarbonylkomplex ausschließlich in Form des Isomeren A mit dem CS-Liganden in axialer Position vorliegt. Das B-Isomere, das chemisch unterschiedliche Sn-Atome aufweisen sollte, wird nicht beobachtet. Die δ^{13} C(CS)- (305.4 ± 0.4) und δ^{119} Sn-Werte (+78.0 ± 0.5) ändern sich im Bereich von -70 bis +25 °C nur wenig. Dies läßt darauf schließen, daß sich die relative Position des CS-Liganden und der beiden Me₁Sn-Gruppen nicht ändert. Darauf deutet auch die Konstanz des ${}^{2}J$ [Sn, ${}^{13}C$ (CS)]-Wertes (110 \pm 0.3 Hz) im gleichen Temperaturbereich hin. Die ¹³C(CO)-Resonanzen geben bei Raumtemperatur ein breites Signal, das bei 0°C in zwei breite Signale im Verhältnis 2:1 aufspaltet. Bei -50 °C sind die ¹³C(CO)-Resonanzen hinreichend scharf, um 117/119Sn-Satelliten zu beobachten (vgl. Abb. 3). Die Signalintensitäten und die Anzahl der Kopplungen ²J[Sn,¹³C(CO)] ermöglichen eine eindeutige Zuordnung der ¹³CO-Resonanzen. Dabei ist bemerkenswert, daß für 2 fast exakt die gleichen ²J[Sn, ¹³C(CO_{en})]-Werte auftreten wie für 1. Auch der gemittelte Wert aus $|{}^{2}J[Sn, {}^{13}C(CS_{ax})]|$ und $|{}^{2}J[Sn, {}^{13}C(CO_{ax})]|$ (ca. 98 Hz) unterscheiden sich wenig von dem $|^{2}J[Sn,^{13}C(CO_{ax})]|$ -Wert für 1 (102 Hz). Die Gegenwart der Thiocarbonylgruppe beeinflußt auch die übrigen NMR-Parameter von 2 nur gering im Vergleich zu 1 (vgl. Tab. 1). Dies steht im Einklang mit δ^{31} P-Werten von Fe-(CO)₄PPh₃ und Fe(CO)₃(CS)PPh₃¹⁵⁾. Die Zuordnung der ¹⁷O-Resonanzen in 2 ist auf Grund der relativen Intensitäten eindeutig

CO_{2q}

Abb. 3. 75.5-MHz-¹³C{¹H}-NMR-Spektrum im Carbonylbereich von fac-Fe(CO)3- $(CS)(SnMe_3)_2$ (2), ca. 10proz. Lösung in $[D_8]$ Toluol bei - 50 C (Probenrohr 5 mm Durchmesser). Das mit 1 gekennzeichnete Signal gehört zum Komplex 1. Die ^{117,119}Sn-Satelliten für 1 sind bei dieser Temperatur breit und werden nicht beobachtet. Die ^{117/119}Sn-Satelliten für die CO-Resonanzen von 2 sind mit Pfeilen gekennzeichnet. Man erkennt zwei Sätze (|²J[Sn, ¹³C- $(CO_{eq-cis})] = 68.0 \text{ Hz}; |^2 J[Sn, ^3C(CO_{eq-trans})]| = 36.0 \text{ Hz})$ für das intensivere und einen Satz $(|^{2}J[Sn,^{13}C(CO_{ax})]| = 86.0 \text{ Hz})$ für das weniger intensive ¹³CO-Signal

und läßt darauf schließen, daß auch in 1 die ¹⁷O-Resonanz bei höheren Frequenzen den COeg-Gruppen zugewiesen werden kann.

Die $|^2 J(Sn,Sn)|$ -Werte in 1 und 2 sind entsprechend der *cis*-Stellung der Me₃Sn-Gruppen relativ klein¹⁶⁾. Die geringe Änderung dieser Werte zwischen -80 und +30 °C zeigt an, daß bei dem intramolekularen Platzwechsel der CO-Gruppen die cis-Stellung der Stannylreste erhalten bleibt. 57Fe-Satelliten entsprechend ¹J(¹¹⁹Sn,⁵⁷Fe) wurden im ¹¹⁹Sn-NMR-Spektrum nicht beobachtet, so daß vermutlich $|{}^{1}J({}^{119}Sn,{}^{57}Fe)| < 40$ Hz gilt.

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung (B.W.) sowie dem Fachbereich Chemie der Universität Marburg (W. P.) für die Bereitstellung von Institutsmitteln.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit unter N2-Schutz durchgeführt. Die verwendeten Lösungsmittel waren wasserfrei und mit N2 gesättigt. - IR: Perkin-Elmer 458. - NMR: Bruker AC 300 (vgl. auch Abb. 1-3 und Tab. 1). -MS: CH 7 von MAT (Bremen), 70 eV; es sind nur charakteristische Fragmente angegeben. - Nach Literaturangaben wurden hergestellt: Fe(CO)₄(CS)¹⁷⁾, N(SnMe₃)₃¹⁸⁾.

Umsetzung von $Fe(CO)_5$ mit $N(SnMe_3)_3$: Zu einer Lösung von 2.76 g (5.46 mmol) N(SnMe₃)₃ in 50 ml Toluol wurde bei -78 °C eine Lösung von 1.07 g (5.46 mmol) Fe(CO)₅ getropft und die Mischung auf Raumtemp. erwärmt. Die zunächst gelbe Lösung wurde nach etwa 5 min farblos, und es trat eine leichte Trübung ein. Die Lösung wurde eingeengt, mit Pentan versetzt und vom Niederschlag (Me₃SnNCO) abfiltriert. Nach Entfernen des Lösungsmittels im Hochvak. verblieb ein hellgelber öliger Rückstand. Das Rohprodukt wurde mit Pentan extrahiert und die Lösung an Al₂O₃ (Aktivitätsstufe III) chromatographisch gereinigt. Entfernen des Lösungsmittels im Hochvak. ergab cis-Fe(CO)₄(SnMe₃)₂ (1) als farbloses Öl; Ausb. 2.50 g (95%). Die Verbindung ist mit authentischem Material identisch. – IR (Nujol): $\tilde{v} = 2060 \text{ cm}^{-1}$, 1990, 1960 v(CO). - MS (m/z [rel. Int.]): M⁺ 498 [2.03], M⁺ - CH₃ 483 [7.60], $M^+ - CH_3 - CO$ 455 [2.43], $M^+ - CH_3 - 2CO$ 427 $[3.74], M^+ - CH_3 - 3CO 399 [3.61], M^+ - 4CO 386 [2.65],$ $M^+ - CH_3 - 4 CO 371 [2.92], M^+ - SnMe_4 318 [46.91], M^+ -$ $CO - SnMe_4$ 290 [11.49], $M^+ - 2CO - SnMe_4$ 262 [7.57], FeSnMe₂⁺ 206 [22.28], SnMe₃⁺ 165 [100.0].

Der in Pentan unlösliche Niederschlag erwies sich als $Me_3SnNCO. - IR$ (Nujol): $\tilde{v} = 2215 \text{ cm}^{-1} v_{as}(NCO)^{7}$. - MS $(m/z \text{ [rel. Int.]}): M^+ - CH_3 192 [100], M^+ - 2CH_3 177 [13],$ SnNCO⁺ 162 [23].

> C₄H₉NOSn (205.8) Ber. C 23.34 H 4.41 N 6.81 Gef. C 22.93 H 4.38 N 6.61

Umsetzung von Fe(CO)₄CS mit N(SnMe₃)₃: Zu einer Lösung von 800 mg (3.8 mmol) frisch dargestelltem Fe(CO)₄CS in Toluol wurde bei Raumtemp. langsam eine Lösung von 1.92 g (3.8 mmol) N(SnMe₃)₃ getropft. Es bildete sich sofort eine braunrote Lösung. Nach ca. 20-30 min wurden die flüchtigen Bestandteile, darunter etwas Fe(CO)₄CS, im Hochvak. entfernt. Der rotbraune ölige Rückstand wurde mit wenig Pentan (ca. 30 ml) extrahiert und das Filtrat rasch an silanolisiertem SiO₂ gereinigt (Säule 2 \times 20 cm). Nach Entfernen des Lösungsmittels im Vak. wurde ein blaßgelbes Festprodukt erhalten, das sich als eine Mischung von $fac-Fe(CO)_{3}$ - $(CS)(SnMe_3)_2$ (2) mit 1 erwies; Ausb. 870 mg (45%). 2 zersetzt sich bei Raumtemp, innerhalb weniger Stunden, kann jedoch bei -78 °C über längere Zeit aufbewahrt werden. – IR (Nujol): $\tilde{v} = 2070$ cm⁻¹, 2055, 2005, 1990, 1972 v(CO); 1280 v(CS). – MS (m/z [rel. Int.]): M⁺ 514 [4.50], M⁺ - CH₃ 499 [6.84], M⁺ - CO 486 $[17.55], M^+ - 2CO 458 [3.90], M^+ - 3CO 430 [13.18],$ Sn₂Me₆⁺ 328 [36.26], FeCSSnMe₂⁺ 250 [14.78], FeSnMe₂⁺ 206 [80.96], SnMe₃⁺ 165 [100.0], CS⁺ 44 [76.36]. – Das Spektrum zeigt mit geringerer Intensität auch die Peaks von 1.

Der rotbraune Niederschlag wurde in THF gelöst und die filtrierte Lösung mit Pentan überschichtet. Es wurde ein braunes Pulver erhalten. Das IR-Spektrum (in Nujol) zeigt eine breite unstrukturierte Bande im Carbonylbereich bei $\tilde{v} = 1980 \text{ cm}^{-1}$. – Elementaranalyse: Gef. C 21.52, H 2.82, N 2.97.

CAS-Registry-Nummern

1: 18372-97-9 / 2: 123148-16-3 / Fe(CO)5: 13463-40-6 / Fe(CO)4CS: 66517-47-3 / N(SnMe₃)₃: 1068-70-8

- ¹⁾ W. Petz, J. Organomet. Chem. 55 (1973) C42.
- ²⁾ W. Petz, J. Organomet. Chem. 72 (1974) 369.
- ³⁾ W. Petz, A. Jonas, J. Organomet. Chem. 120 (1976) 423.
- ⁴⁾ W. Petz, J. Organomet. Chem. 165 (1979) 199.
- ⁵⁾ E. W. Abel, M. O. Dunster, J. Organomet. Chem. 49 (1973) 435.
- ⁶⁾ Gmelin, Fe-Organische Verbindungen, Bd. 2, S. 135, und darin zitierte Literatur, Springer Verlag, Berlin-Heidelberg-New York 1978.
- ⁷⁾ Gmelin, Organotin Compounds, Teil 8, S. 158, und darin zitierte Literatur, Springer Verlag, Berlin-Heidelberg-New York 1981.
- ⁸⁾ R. F. Dalton, K. Jones, J. Chem. Soc. A, 1970, 590.
- ⁹⁾ W. Petz, J. Organomet. Chem. 205 (1981) 203
- ¹⁰⁾ R. K. Pomeroy, L. Vancea, H. P. Calhoun, W. A. G. Graham, Inorg. Chem. 16 (1977) 1508.
- ¹¹⁾ R. Krentz, R. K. Pomeroy, *Inorg. Chem.* **24** (1985) 2976. ¹²⁾ J. A. Audett, K. Mackay, *J. Chem. Soc.*, *Dalton Trans.* **1988**, 2635.
- ¹³⁾ S. Kerschl, A. Sebald, B. Wrackmeyer, Magn. Reson. Chem. 23
- (1985) 514. ¹⁴⁾ ^{14a)} G. A. Morris, J. Magn. Reson. **41** (1980) 185. ^{14b)} D. B. Burum, R. R. Ernst, J. Magn. Reson. 39 (1980) 163.
- ¹⁵⁾ W. Petz, J. Organomet. Chem. 346 (1988) 39
- ¹⁶⁾ B. Wrackmeyer, Ann. Rep. NMR Spectrosc. 16 (1985) 73.
- ¹⁷⁾ W. Petz, J. Örganomet. Chem. **146** (1978) C23
- ¹⁸⁾ K. Sisido, S. Kozima, J. Org. Chem. 29 (1964) 907.

[204/89]